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ABSTRACT

Electromagnetic scattering from trees and vegetation is of prime importance in

radar and remote sensing. The actual problem of scattering from trees is rather

complicated and involves three dimensional scattering from lossy, electrically large,

and randomly oriented objects.

In this thesis, the radar cross section of a planar fractal tree is considered.

Although a planar tree is far from being real, scattering from it sheds light on the

scattering phenomenon from an actual tree. The planar tree is generated using

fractal geometry and its branches are considered perfectly conducting. The tree is

illuminated by a plane wave and the problem is solved using the moment method.

Data is presented for the radar cross section for different branching angles of the

tree and at different frequencies.
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I. INTRODUCTION

A. NEED FOR THE STUDY

The trees existing in the natural world are fractal anisotropic. They are made

up of long, intersecting and lossy objects. The geometry of these objects is niot easy

to set up as they are randomly oriented in a three dimensional space. The use of

fractals facilitates the modeling of semi-randomly distributed structures.

Mandelbrodt [Ref. 1] has shown that a number of naturally occurring phenomenon

such as coastlines, clouds, trees, etc. are fractal in nature. For instance, when a

branch is divided into two (or more), the ratio of the length of the subbranches to

the main branch length remains constant. Furthermore, the branching angle also

remnains the same.

In this thesis, scattering from planar fractal trees is considered. The radar

cross section of a real fractal tree is a complicated scattering problemn. The analysis

of this problei in a two dimensional space gives an approximate idea of the radar

cross section of a real tree.

The radar cross, section of an object is a quantitative measure of the ratio of

the power density that is received and scattered by the object to the power density

of the electromagnetic wave that illunilnates that object. The radar crms sition is

independent of the range of the object for the far-field situation. The theoretical

dcefinition of the radar cross section "a" is given by the fonnula:

a S 'I ira ~



where t' is the incident electric field vector, ts is the scattered electric field vector,

and R is the distance between the scattered object and the point of observation. The

radar cross section has dimensions of area. Usually, it is expressed in square

wavelengths.

B. STATEMENT OF THE PROBLEM

This thesis investigates the radar cross section of planar fractal trees. These

trees are composed of planar thin strip dipoles of arbitrarily dimensions and

orientations in a plane. These structures are excited by plane waves of various

frequencies.

The first step in solving the problem is to calculate the induced current

distribution on each strip. The calculation of the current distribution is based on the

theory of the moment method and requires a knowledge of the impedance between

any two of these strips as well as the voltage on each planar strip due to the

incident electric field. The basic concepts and the calculation of the current

distribution ate described in Chapter 2.

In Chapter 3, the development of a FORTRAN program, is presented. The

evaluation of the radar cross section requires the knowledge of the scattered electric

field due to the induced currents on the planar strips. The program computes thle

scattered electric field and then the radar cross section of that structure. The details

of these "aicujations are also presented in this Chapter.

The computer models that are use by the developed program are presented in

Chapter 4. Their generation is based on the fractal geouietry. An existing and

modified program is used to generate the geometry of the planar fractal trees in

order to be used as input in the developed program.

2



The numerical results of the radar cross section of a single planar dipole and a

a number of planar fractal trees are presented in Chapter 5. The scattering from a

single dipole is compared with standard results for a similar case. The limitations of

the developed program are also presented in this Chapter.

In Chapter 5, the conclusions of the radar cross saction results and

recommendations are presented. The two programs that are used for this

investigation are listed in the Appendices.

3



IH. METHOD OF MOMENTS THEORY

In this section of the study, the basic concepts of the moment method theory

are presented. This theory is used in the development of the RCS program to find

the current distribution on a planar strip due to an incident plane wave.

For a given structure consisting of planar dipoles the impedance between any

two of them is calculated from the knowledge of the geometry and the wavelength of

the incident plane wave. The voltage on each dipole is calculated from the

knowledge of the characteristics of the incident electric field. The induced current

distribution on each dipole of the structure is determined from the calculated

impedance and voltage using the method of moments theory.

A. GENERAL TIEORY

The method of moments is a numerical procedure for solving integral

tquations of the form:

gx). a<x < b (eqn 2.1)

where f(x") is an unknown function, K(xx') iS a known Kernel or Gr(eei's fulictioti,

and g(x) i.s a given functio:i. This procedure reduces the integral equation (equ 2.1)

to a system of simuitanhvvui lin .ear algebraic equations in terins of some unknowo

coeficients. This snethod requires that the function f(x') 1w approximated by a

series of N expansion fuinictions or " basig fur.ttions ", such that



N
f(x') = V anfn(x'), n=1,2 ...... N (eqn 2.2)

nal

where the domain of fn(x') is the same as that of f(x') and a,'s are the complex

unknown expansion coefficients.

There are two types of basis functions. The subdomain functions, which are

nonzero over a part of the domain of the unknown function f(x'), and entire domain

functions being nonzero over the entire domain of f(x'). In antennas, some

commonly employed subdon'ain basis functions are the piecewise sinusoid functions,

the unit height-pulse functions and the piecewise triangular functions.

The subdomain procedure requires subdivision of the structure into N

nonoverlapping segments. Figure 2.1 shows a segmented line where the segments are

assumed to be collinear and of equal length, although this condition is not necessary.

SX• xS: b

Figure 2.i Segmeentd Line. [From Ref. 21



Figure 2.2 shows a subdomain unit height-pulse function which produces a

staircase representation of the unknown function f(x'). Figure 2.3 shows a

subdornain sinusoid basis function and the representation of the function f(x').

Figure 2.4 shows a subdomain triangular basis function producing a smoother

representation of the function f(x') than the case of the unit height-pulse basis

function.

The use of entire-domain basis functions does not require any segmentation of

the structure. One of the most most commonly used basis functions of this kind is

the sinusoidal basis functions.
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Figre 2.2 Unit Height-Pulse Basis Function and a Staircase

Representation of f(x'). [From Ref. 21
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The substitution of the function f(x') by a sequence of N basis functions leads

+,o one equation of N unknowns of the expansion coefficients an, which can be found

by using N linearly independent equations. These equations are set up by the use of

"testing or weighting" functions Wm(x), m=1,2,....N. At this point the definition of

the inner product is required. The inner product (f, g) between any two functions or

vectors f, g is a scalar operation defined as

_(,g) = f.g ds (eqn 2.3)

where S is the surface of the structure that is analyzed [Ref 4]. The inner product of

the selected teting functions wm(x), with the two sides of the original integral

equat~op leadis to the equation:

-b

(eqn 2.4)

or

r1) N(•win(x). J I af,(x')dx' = g(x), Wx) m 1,2 ...... N
--.-- -ita n --

(eqn 2.5)

The use o1 the above definition for the i;.aer product, yields:

- 4fa, •(x)dx j f,,(x')K(x,xt)dx` = gix)w.(x)dx, mi = 1.....N
tj1C a a a

(eqxn 2.6)

10



The following substitutions

VM = Jb g(x)wm(x)dx, m=1,2 ........ ,N (eqn 2.7)

and

b b
Zon =f a w(x)dx[a 0(x')K(x,x')dx', mn=1,2....N

(eqn 2.8)

result in a matrix equation of the form:

[Zmn] .[an] = [Vm] (eqn 2.9)

The unknowns [a.] can be obtained through a matrix inversion:
-1

[an] = [ZDa]I -[V1 (eqn 2.10)
-1

where [Zm00  is the inverse matrix. The column vector [Vm] depends upon the given

function g(x) and the selected testing functions wm(x). The matrix [Z..] depends

upon the known kernel K(x,x') and both the selected basis and testing functions.

Once the expansion coefficients are known, the function f(x') is also known.

The choice of basis and testing or weighting functions is based upon experience

and the rule is that their number has to be the same. The procedure of using the

same basis and testing functions is called the " Garlekin's method "

B. APPLICATIONS TO EM THEORY

A number of problems in electromagnetic radiation and scattering cau be

solved by the method of moments. li the present case, the simple case of a perfectly

conducting object "situated in free space " is considered.

The basic problem is tu investigate the case when an object is illunminated by

fields of known impressed electic and magnetic currents (ji, Mi). In the absence of

4R
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the object, -he impressed currents radiate the assumed known incident electric and

magnetic fields (Ei, H'). In the presence of this object, the impressed currents

radiate the unknown total fields (Et, Ht).

The integral equation is obtained by the surface equivalence principle,

replacing the object by free space together with the electric surface current density

....J=nxlt (eqn 2.11)

where J exists on the entire surface S of the object and n is the unit vector normal

to that surface. In free space, J radiates the scattered fields Es, Hs

Es = Et - E (eqn 2.12)

H- = Ht - lH (eqn 2.13)

The boundary conditions for this case enforce the total tangential electric field

on the surface S to zero:

n x(E + E)= (eqn 2.14)

This is an integral equation for J since the scattered electric field Es can be written

as an integral over S of the dot product of J and the dyadic free space Green's

function. [Ref. 5]

As the geometry of the object is known, it is more convenient to use the total

current I instead of the total current density J. So, the problem is to find the

unknown current I induced by the incident electric field. The method of moments

solve these kind of problems by the following procedure.

The fir-lt, step is to expand the unknown current I in terms of some basis set:

NI z E. InFa (eqni 2.15)

where the 1. are the sequence of N unknown complex coefficients, and the Fu is a

12



sequence of N known modes or basis functions. The best choice of Fn for a given

problem could be quite involved and is discussed in (Ref. 4, pp 308-310].

The second step is to select the testing or weighting functions u, m=1,2,....N.

These can be identical with the basis functions or different. The inner product of the

sequence of N weighting functions Win, with both sides of the integral equation gives

a N x N system of simultaneous linear algebraic equations of the symbolic form:

[Z].[I] = [V] (eqn 2.16)

where I is the current column vector whose N components give the values of I1

and [Z] is the N x N impedance matrix given by the equation

ZM,, = -JJ'sES. wads (eqn 2.17)

where S is the surface of the structure being analyzed. The impedance matrix (Z] is

always symmetric, and, for the special case of a thin dipole instead of an arbitrary

object, is also a Toeplitz matrix. In a Toeplitz matrix, Z." depends only on I rn-n I.

Generally, [Z] is dependent only on the geometry and material composition of

the scatterer, but not on the incident fields [Ref 5]. The right-hand side of the last

equation is the voltage vector whose N components give the corresponding mode

voltage. The voltage vector depends only on the excitation, i.e., the incident electric

field. The dimensions of the elements of (ZJ and [V] are volt-amps (VA), while the

elements of [11 are dimension less.

The solution of the last matrix equation is the column vector [I], who.s

Jenients represent the complex coefficients I.. As the total current I was expanded

by a sequence of N known modes or basis functions and the complex coefficients 1.

are known, the total current and so the total current density J is also known.

13



Although the choice of weighting functions is free, it has to be considered that

the matrix equation being solved requires the evaluation of N2 terms and each term

requires two or more integrations. When these integrations are to be done

"numerically, the computations become complicated. There is a way to reduce this

complexity by choosing as weighting functions the A:ac delta functions. This is the

method of point-matching in which delta functions are enforced only at discrete

points on the surface S. The results of this method can be quite accurate especially

when the discrete points are selected to be equally spaced. The solution satisfies the

electromagnetic boundary conditions (e.g., vanishing tangential electric fields on the

surface of an electric conductor) only at discrete points [Ref 4]. Between these

points the boundary conditions may not be satisfied. In this case it is required to

define the deviation as a residual (e.g., residual=AEI tan = EsI tan+ E'itan 0 0 on

the surface S of an electric conductor) and use the method of weighted residuals so

that the boundary conditions will be satisfied in an average sense over the entire

surface S.

14



III. ANALYSIS AND DEVELOPMENT OF RCS PROGRAM

In this chapter, the basic steps that are involved in the calculation of the

Radar Cross Section (RCS) of a planar structure composed of conducting strips are

presented. As mentioned earlier, the fractal tree is modeled as consisting of planar

thin strips. The radar cross section of the fractal tree is calculated using the method

of moments. A Fortran program is developed to calculate the RCS of the tree for a

specified geometry and at a given frequency.

The moment method discretizes an integral equation to a matrix equation of

the form:

[Z].[I] = [V] (eqn 3.1)

where [Z] is the impedance matrix whose elements represent the mutual impedance

between any two dipoles of a given structure depending upon the wavelength and

geometry of the structure, [V] is the voltage matrix whose elements correspond to

the voltage on each dipole due to excitation ( incident electric field ), and [I] is the

unknown matrix whose elements represent the induced current on each dipole.

A. DEVELOPMENT OF RCS PROGRAM

The numerical results for RCS are obtained from a Fortran programi that

calculates backscattered RCS of a planar structure consisting of arbitrarily oriented

dipoles. For convenience, the structure will be assumed to be in the y-z plane of an

xyz cartesian coordinate system.

Figure 3.1 shows the structure to be investigated. A large number of planar

dipoles of variable lengths, widths, and orientations in the y-z plane is

1,5



illuminated by a plane wave with electric field linearly polarized and characterized

by the angles 0o and 00. It is required to calculate the backscattered RCS from this

structure.

The incident electric field V is given by the formula

= e.eJ(kxx-kyy+kzz) (eqn 3.2)

where l• is the propagation vector and

kx2+ ky2+ kZ2 = k02 = w2PoCO (eqn 3.3)

ko = 2.. (eqn 3.4)
A

kx = kosinOocospo (eqn 3.5)

ky = kosinOosin• 0  (eqn 3.6)

k, = kocosOo (eqn 3.7)

e = ExX + Eyy + Ez (eqn 3.8)

The electric field tI' lies on the plane perpendicular to the direction of

propagation of the plane wave. Hence, e. k = 0 implies that

Exkx + Eyky + Ezkz = 0 (eqn 3.9)

The substitution of Ey and Ez by the variables a and b (independent variables) gives

the coordinate Ex as a dependent variable

Ex (ak. + bk?) (eqn 3.10)k x

Equation 3.1 the becomes

ayb- Y* + b k,)]Z~~xkY kzS~kx

(eqn 3.11)

16
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Figure 3.1 Geometry of RCS Program.
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The RCS program that has been developed makes the following assumptions:

1. The dipoles are very thin planar strips. The width of the dipoles is

assumed to be electrically small so that only the axial current is

significant. Further, there is no current variation along the width of

the dipoles.

2. The dipoles are not intersecting.

3. The dipoles are perfect conductors.

The program uses the theory of moment method and the way that it solves the

problem can be understood if a single planar thin dipole in the y-z plane is

considered. Each dipole is subdivided into equal segments. Overlapping Piecewise

Sinusoidal (PWS) modes are assumed to exist on the dipole. The length of each

%VS mode is equal to the length of two segments. Figure 3.2 shows the mth PWS

mode. The PWVS mode has a length 2hm, and a width 2wm. The coordinates of its

center are (y., zm), and it is oriented at an angle • measured from tht; z axis.

The incident electric fLeld induces current along the axis C of that mode. In

Figure 3.2, the induced current I varies s'nusoidally along the axis of the mth mode.

A new coordinate system i-- is introduced, whece C is the axis of the dipole awd iu is

the axis perpendicular to (. The it-( coordinate sysiten is obtained by rotating the

y-z system about the x-axis through an angle 900--O . i'igure 3.3 shows the details

of this rotation.

The relation betwven the coordinates of khe center of the mode along the axis

of the two orthogonal systems is found to be:

y = yM + (Sin(pM) - jCos(QW) (Noq 3.12)

z = ze + (cos(k) + upiu(%.M) (eqn 3.13)

is



The corresponding vector equation is:

y = ýsin(o) - ncos(o) (eqn 3.14)

z = (cos(om) + nsin(O) (eqn 3.15)

1)

2w,

y m y

Figure 3.2 Geometry o" the tnt PWS Mode of the Structtre.
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Figure 3.3 Tranorwatiot of PWSllo1p's (X-mtc Coordinates.



1. Voltage Equations

In this section, expressions for the elements of the voltage matrix IV]

due to the incident electric field, are presented. Each element of this matrix

corresponds to a PWS mode of the structure that is investigated. The size of the

voltage matrix is equal to the total number of modes of the structure.

The induced current density on the mth mode of the structure, due to

incident electric field, is

[.=-sin(ko(hm 1 (eqn 3.16)

2win sin(kohm)

where 2Win is the width and 2hm is the length of the mth mode. For each mode, the

induced current variation will be sinusoidal along its axis, behi.g maximum at the

center and zero at the end points. The corresponding voltage V, is

Vm = . J d~dn (eqn 3.17)
-m -h. !x-0

From equations 3.11 and 3.16, it is seen that

.'.1 = [a sin(Qr) + b cos(era)] e-j[ky(ym + Csin(4m) + kz(zm +Ccos(VQ)]

(eqn 3.18)

where 0. is the angle between the z axis (reference for angle measurements) and the

axis of the mode and y., z. are the coordinates of the center of the mode along the

"2]



y and z axis respectively. The substitution into equation 3.17, gives the followi,,g

form of Vm:
gj~ky~m+ kzzm)rh

VM = e-J(kyYm [a sin(era) + b cos(era)] f h m e'jký sin(ko(hm-I (1))d(sin(koh.) -m

(eqn 3.19)

where ký = kysin(ý) + kzcos(Vb). A closed form evaluation of the integral in this

equation leads to final form of Vm

Vm 2koVom (cos(kol.) - cos(k(rhm) k] koVm= 2 "1

ký - ko

(eqn 3.20)

Vm= VoO, hm sin(kohm) k= ko

(eqn 3.21)

where

VOrn-= e-i(kym + kz) a sin(Oi) + b cos(O/b)
sin(koh.)

(cq, 3.22)

2. Iadiatioa Equations

In this section, onxpressions for the far-zone scattered fields due to the

riut IPWS mode are developed. For far-field observations the electric field is given

in spherical coordinates by the following equations [Ref 4]:

•99



Er 0 (eqn 3.23)

Ez - jke-Jkr (L + NO) (eqn 3.24)

4krr
E (P4, ~+i2-LO nN V) (eqn 3.25)

where

LO= Jj [Mxcos~cosV + MycossinV -M~sinM e+jkor cosOb• ds'

(eqn 3.26)

L= JJ [-Mxsiny + MycosV] e+jkor'cOsB1 ds'

(eqn 3.27)

No = -JS [JxCosOcosV + Jycus&inV - JzsinO] e+jkor'cOsOm ds'

(eqn 3.28)

NV = JJS[-Jxsinp + Jycosv] e+jkor 'cOS% ds'

(eqn 3.29)

= 120,r (eqn 3.30)

The quantities J., Jy, Jz, are tile components of the electric current

density Is that are induced on the mth mode over the surface S, and the quantities

M, ., My, MN, are the coordinates of the magnetic current density N~s over the surface

S. As the structure is on the y-z plane and NIs is zero, the quantities Jx, L0 L V are

zero. Equations 3.24 wnd 3.25 become:

E1 E kO s-jkor 74 N (eqn 3.31)

E +iko-Jl•r /N (eq1 3.32)

23



As the current density Im is along the C-axis, all quantities within the

integrals for I and Iq will be expressed in terms of the •-- system. The surface

element that is used in all integrals is ds' = dydz = dcdn = dc, as the width of the

mode is assumed to be very small in terms of its length. The transformations from

the y-z system to the ¢-n system are made by using the following substitutions:

r'cos(Om) = ysinOsiny + zcos9 (eqn 3.33)

where

y = ym + (sin(OM) (eqn 3.34)

z = zm + (cos(Om) (eqn 3.35)

and

IM= Jyy + JzZ = [2 Msi~oi sin(ko(hm7-I j)2wmsin(koh.)

(eqn 3.36)

where

Jy = J sin(Vra) (eqn 3.37)

_z = J cos(O.) (eqn 3.38)

These substitutions and algebraic manipulations give the quantities Non and Nn

for the mth mode in the (-y system:

N 0 -2ko 1cos(Ehm) - cos(koho) Em # ±k0N~ 0o 2
Em- ko

(eqn 3.39)

NOr-- N o h. sin(kohm) Em = iko

(eqn 3.40)

and
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N =N -2ko [ cos(Emh)-cos(kohm)] Em :hko
Em - ko

(eqn 3.41)

N(ým = N hm sin(Emhm) Em = +ko

(eqn 3.42)

where

N 0 = sinomcosOsi nV - coso,,sinO Im ej[ko(ymsinfsinlp+zmcOs8)]

"sin(kohm)

(eqn 3.43)

N = sinolmCoS•p Im ej[k°(ymsin01sinfp+zmcos0)]
NPO sin(kohm)

(eqn 3.44)

Em = ko(sin4'sin0sinv + cos~bcos0)

(eqn 3.45)

In this thesis, only the monostatic radar cross section will be

considered. In the radiation equations the angles 0 and V represent the orientation

angles of the scattered electric field 9ts. Their relation with the incident angles 06

"and ýo for the monostatic case is:

0= 7r- 00 (eqn 3.46)

S= 7r- Vo (eqn 3.47)

If M denotes the total number of PWS modes in the structure under

investigation, then
M

N0 = E N0n (eqn 3.48)
11=1

M

N = N (eqn 3.49)
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The final expression for the equations 3.24 and 3.25 is

m
Eq= C. E Nn- (eqn 3.50)

m--1
M

EV=C=E N (eqn 3.51)
" m=1 'm

where

C = -jke-J kore (eqn 3.52)
47rr

3. RCS Equations

When an incident plane wave with electric field ft' strikes the object

and ts is the scattered electric field, the radar cross section a is defined as

•i 2

2lim 4rr2 (eqn 3.53)
.r - ooi

For the scattered electric field ts, its spherical coordinates Eo, and E O have been

calculated by the equations 3.50 and 3.51. The incident electric field it' is known by

means of equation 3.11.

.2 2 2 ky +bkz 2

i•'il = lal + bI2 + 2 (eqn 3.54)1 kx

22 E•2
I I 2= JEOI +1 =V ICI [[IN,12+ INJ

(,lqn 3.55)
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The combination of equations 3.11, 3.50-3.52, 3.54-3.55, and 3.53 leads to the final

formula for RCS:
'-1° [INol + ,2 2

4r j~~~ai + JIb + k+bz. _ .kx

(eqn 3.56)

This is the formula that the program uses to compute the RCS of a

planar structure for a given set of incident angles 8o, and ýpo.

B. INPUT-OUTPUT OF RCS PROGRAM

The RCS program, which is described in Appendix A, is a FORTRAN

program having two input files. The first input file, INPUT1, contains the data that

characterize the incident plane wave and the data that describe the geometry of the

planar structure whose broadside RCS is measured. The second input file, INPUT,

contains the set of incident angles 0o, cpo.

The program reads from the INPUT1 file the following input data:

1. frequency of the incident plane wave in GHz,

2. parameters a and b that characterize the polarization of the incident

electric field.

3. number of dipoles that the structure consists of,

4. half length of each dipole in cm,

5. half width of each dipole in cm,

6. coordinates in cm of the center of each dipole along the two axes of

the orthogonal system that the structure lies,
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7. orientation angle of each dipole, measured from the vertical axis,

positive in the clockwise direction, and

8. number of segments of each dipole.

As the program reads these input data it generates the geometry of the PWS

modes, calculates the impedance elements between any two modes of the structure,

and fills the impedance matrix [Z]. The size of the impedance matrix depends on the

total number of modes. When this matrix is calculated and filled, the program

inverts it to [Z]-1 and stores it for later use.

The next step is to read from the INPUT file the sets of incident angles 8o, Vo

and for each one it calculates the voltage on each mode, filling the voltage matrix

[V]. This matrix is a column vector which depends upon the excitation only. Then it

multiplies the stored inverted impedance matrix [Z]-1 by the voltage matrix. This

yields the current vector [I]:

[I]= Z]-I [V] (eqn 3.57)

As the induced currents are known, the program uses the previously described

radiation equations and calculates the RCS of the structure corresponding to the

given set of incident angles Oo, (o. The output RCS is normalized to the square of

the wavelength A2, and is given in dB. The program reads the next set of incident

angles 0o, po and repeats the same procedure to compute the RCS of the new set.

Although the input lengths and widths are in cm, the program considers them

normalized to the wavelength. For accurate results at least 4 segments per

wavelength are chosen. The selection of the width of each dipole is arbitrarily taken

as L/W = 33.
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IV. FRACTAL TREE GENERATION

The problem of measuring the radar cross section of a real natural tree is

complicated as it requires an investigation in three dimensional space with very

long, intersecting elongated objects that are randomly oriented.

For simplicity the radar cross section (RCS) problem is solved in a two

dimensional space. RCS is calculated from a planar fractal tree whose branches are

considered as thin planar dipoles of different lengths and widths. In an actual tree,

the branches are lossy and in general anisotropic. However, in the present model,

the tree is comprised of perfectly conducting branches. The geometry of this tree is

based upon the fractal geometry.

A. DEFINITIONS

Fractal is a mathematical set or object whose form is extremely irregular or

fragmented at all scales [Ref. 6]. The requirement to describe the shape of many

objects that appear in the natural world, such as trees, mountains, coastlines, etc.,

led to the generation of fractal geometry. As Euclidean geometry cannot give

mathematical expressions to describe fractal objects, fractal geometry is used to

describe mathematically many natural patterns.
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The basic characteristics of fractal objects are [Ref. 7]:

1. A large degree of heterogeneity.

2. A self-similar structure over many size scales. Self-similarity refers

to the general preservation of form or characteristic regardless of the

scale of observation.

3. The lack of a well-defined (characteristic) scale.

The geometric characteristics of fractal objects are useful for describing phenomena

of nature, such as scattering of objects like landscapes or surface cracks. Although

these objects are irregular and randomly oriented in nature, they show structural

similarities on several different discrete size scales [Ref. 71.

One measure of structural complexity is the fractal dimension DF. There are

several definitions of DF depending upon the particular application. For the case of

fractal trees the fractal dimension DF is the measure of the space that a

self-similar structure fills, and it varies with the branching levels that the structure

consists of.

The most useful terms from fractal geometry that are used to describe a planar

fractal tree are the following:

1. The number of branch segments N formed from each preceding branch

segment.

2. The constant similarity ratio "r" that relates the fractional reduction

in segment length for each segment to previous level, this factor is less

than 1.0.

In this case, the fractal dimension D" is given by the formula (Ref. 7]:

1 - DF = iog(total branch length) -_= log(rN)

log(average branch length) log(1 / r)
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This equation is accurate for symmetric structures or asymmetric structures having

a normal distribution function [Ref. 7]. More details about fractal geometry are

discussed in [Ref. 1] and [Ref. 7].

B. FRACTAL TREE GENERATION

In the planar fractal structures that are used for calculating the radar cross

section, the number of branch segments N formed from each preceding branch

segment is 2. The principal properties of these trees are that the branches are not

overlapping, and the angle 0 between any two branches is the same. The

nonoverlapping between the branches of each fractal model is achieved by choosing

the branch angle 0 for a given reduction factor by the following empirical formula

[Ref. 71

Minimum 0 = 32.34 x r6.77  (Radians)

This angle is given in radians and r is the desired reduction factor which is a

constant for the structure. As the reduction factor r increases the tree fills more

space.

Five types of planar fractal trees are considered in this thesis. Each type

corresponds to a set of values for reduction fantor r and minimum branch angle 0.

Table 4.1 shows these sets of r and minimum 0, whi.re 0 is given in degrees.

Each model is generated by selecting the desirable reduction factor r (r < 1.0),

the corresponding branch angle 0 given by equation 4.1, the initial lengtl from

which the reduction will start, the value of N (which in the investigated case is 2),
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and the number of the desired levels for branch generation. Each level contains 2r

points corresponding to the end points of the reduced length branches.

"TABLE 4.1

NUMERICAL VALUES OF r AND MINIMUM ANGLE 0.

REDUCTION FACTOR (r) ANGLE 0

0.53 29.940

0.55 46.430

0.60 95.890

0.66 145.350

0.71 180.000

Figures 4.1-4.5 show the planar fractal trees that correspond to each set of r

and 0 of Table 4.1 respectively. As the branch angle 0 increases, the spreading of the

branches becomes larger. In all trees the physical length of the initial branch is

chosen as two centimeters. These models were generated by a FORTRAN program

which has the following input data:

1. The initial length. This the length of the first dipole whose length will

be reduced by the constant reduction factor (r).

2. The value of N, being 2 in all cases.

3. The initial point that the reduction starts. This point is the end point

of the initial wire.
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4. The number of desirable levels for branch generation.

5. The branch angle 0.

The program generates two output files. The first is the input file for the RCS

program containing all the required data that were mentioned in Chapter 3. The

second output file contains the coordinates of the start and end points of each

generated branch.

For the models characterized by reduction factors 0.53, 0.55, and 0.60, the

program limits the structure size when the length of a branch becomes smaller than

0.1 of the wavelength of the incident plane wave. For the models characterized by

reduction factor 0.66 and 0.71, this limit is taken as 0.15. The reason is that as the

reduction factor increases the number of branches in a particular branch level

increases. The size of the tree is truncated so that the number of unknowns is

manageable.

The geometry of all planar fractal trees is in the same coordinate system that

the RCS program uses. All models have been generated in the y-z plane of a

cartesian coordinate system.
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Figure 4.1 Fractal Tree for r = 0.53 aind 0 - 29.940.
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Figure 4.3 Fractal Tree for r =0.60 and 0 =95-890.
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Figure 4.4 FraicWa Tree fur r 0.66~ and 0 =145.350.
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Figure 4.5 Fractal Tree for r = 0.71 and 0 = 1800.
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V. NUMERICAL RESULTS

In this chapter, computed results for the radar cross section a of planar

structures are presented. In order to check the program, the radar cross section

results of a single planar dipole are compared with the results given in [Ref. 8].

Details of this comparison are presented in the following section.

In all models where numerical results for the radar cross section are presented,

the following factors have been considered:

1. E-plane is the plane corresponding to o = 00, and 0o varying from 00 to

1800.

2. H-piane is the plane corresponding to 0o = 900, and (po varying from -90o

to +900.

*. 3. The resulting RCS a is normalized to the square of the wavelength A of the

incident plane wave (u/A2).

4. The number of segments, that each dipole is subdivided, is taken as four

per wavelength.

5. The physical dimensions and orientations of the dipoles used to construct a

planar structure are the same when this structure is investigated at different

frequencies, and only the segmentation is different depending upon the wavelength A

of the incident plane wave.

6. Each PWS mode has length equal to the length of two segments.

7. The incident electric field is linearly polarized and the parameters a and b

are token as 0 and 1 respectively for this investigation. This corresponds to having

only a horizontal magnetic field.
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A. SCATTERING FROM A SINGLE DIPOLE

In Figure 5.1 a centered loaded vertical planar thin dipole of length L and

"width 2w is oriented along the z axis. This dipole is excited by a plane wave of

frequency 30 GHz traveling in the x-y plane (00 = 900, (po = 00). The same

situation is described in [Ref. 8, pp. 510-515] for a cylindrical dipole of radius a and

length L such that L/2a=74.2. In the present case of a planar dipole, the length of

the planar dipole is selected such that L/2w = 33 [Ref. 9]. Figure 5.2 shows, on a

semi-log scale, the results computed by the developed program of the monostatic

normalized radar cross section a/A2 of this single dipole for values of L/A ranging

from 0 to 1.4, and for loads ZL = 0 and ZL = w. The case of ZL = w is achieved by

setting a small gap (0.01 wavelength) at the center of this planar dipole. In Figure

5.2, the corresponding values of a/A2 from [Ref. 8, pp. 115] are also shown.

This comparison leads to an accurate check of the correct calculation of the

radar cross section by the developed RCS program. The small discrepancy between

the computed values and those given by [Ref. 8] is due to the error incurred in

reading values off the curves presented in [Ref. 8, pp. 115].
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B. SCATTERING FROM PLANAR FRACTAL TREES

In Chapter 4, five types of planar fractal trees were described. Each type of

these trees was lying in the y-z plane. The developed RCS program calculates the

broadside radar cross section o of each tree for frequencies 15 GHz-75 GHz, for the

monostatic case. The initial dipole that is being reduced by the reduction factor r

has physical length 2 cm and only the branch lengths are changed for each tree

depending upon the reduction factor r. As the frequency of the plane wave changes,

the electrical length of this dipole as well as the dipoles composing the tree will also

change. For the frequency range of 15 GHz-75 GHz, the electrical length of the

initial length will vary from one to four wavelengths.

Figures 5.3-5.6 show the variations of u,/A2, in dB, in the E-plane and the

H-plane for the case of a fractal tree characterized by reduction factor r = 0.53 and

branch angle 0 = 29.940. The frequency of the incident plane wave varied from 15

GHz to 60 GHz in steps of 15 GHz. The tree is composed of 31 dipoles. This number

is small as the reduction factor is small and the branch lengths are reduced to very

small values at low levels.

The a/A2 variations in the E-Plane are in a range of 10 dB approximately. In

the H-Plane. The a/A2 is symmetric about the 900 axis and is smoother at lower

frequencies. As the frequency increases, the maximum value of a/A2 at Oo = 900 and

A=00, increases from 2.73 dB at 15 GHz to 19.23 dB at 60 GHz. Figure 5.7 shows

the variation of the maximum u/A 2 in terms of frequency increments for the same

structure. This variation is very small between 30 and 45 GHz.
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Figures 5.8-5.12 show the variations of /A2 , in dB, in the E and H planes

for the fractal tree characterized by a reduction factor r = 0.55 and branch angle 0

= 46.430. In this case, the fractal tree is composed of 63 dipoles and spreads more

than the previous one, and the lengths of the branches are bigger than the previous

ones (due to a larger reduction factor of 0.55 instead of 0.53). This results in more

variations for c/A 2 in both E and H planes.

This model is investigated at a frequency range of 15-75 GHz. At all

frequencies, the u/A 2 varies in a range of 10-12 dB approximately. In the H--Plane

the variation of u/A 2 is symmetric about the 900 axis. The maximum value of radar

cross section varies from 2.78 db at 15 GHz to 22.63 dB at 75 GHz. Figure 5.13

shows the maximum value of c/A2, corresponding to Oo = 900 and vo = 00 in terms

of the frequency of the incident plane wave, varying from 15 GHz to 75 GHz. This

maximum u/A2 increases linearly as the frequency increases except the range of

45-S0 GHz where the variation is very small.
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Figures 5.14-5.18 show the variations of the normalized radar cross section

a/A2 of a planar fractal tree characterized by reduction factor r = 0.60 and branch

angle 0 = 95.890. This model is composed of 63 dipoles and has more spreading than

the two models that were previously investigated. The branches have larger physical

lengths than the ones in other two models. At 15 GHz, the variation of a/A2 in the

E-Plane is very low and similar to the variation in the other two models at the

same frequency. In the H-Plane this variation is different as the incident plane

wave strikes more dipoles from -900 to 900.

As the frequency increases, the electrical length of the dipoles is also increased,

and more lobes appear at 30 GHz and higher frequencies in both the E and the H

planes. The maximum value of a/A2 at 0o= 900 and A = 00 varies from -0.23 dB

at 15 GHz to 21.60 dB at 75 GHz. Figure 5.19 shows the variation of the maximum

radar cross section in terms of the frequency of the incident plane wave. In a range

of 15-60 GHz the values of maximum /,/A2 follow a straight line approximately. In

the range of 60-75 GHz the variation of maximum a/A 2 is small.

The planar fractal trees characterized by r = 0.66, 0 = 145.350, and r = 0.71, 0

= 1800, have large values of branching angles. The large values of reduction factor r

"generate fractal trees whose branches have large physical lengths compared with the

lengths of the branches of the previously investigated fractal trees. The result is that

the electrical lengths of twese branches are large also at the range of 15-75 GHz, and

a large number of modes is required to investigate the last two types of fractal trees.

It was found that the developed RCS program is not able to calculate the radar

cross section of fractal trees that are characterized by large values of reduction

factor r and branching angle 0 due to memory restrictions and other numerical

problems.
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For this reason the numerical results for u/A2 are not presented in this thesis for

these two cases.

It is seen by comparing Figures 5.7, 5.13, and 5.19 that there is a frequency

range over which the variation of maximum RCS is rather small. Furthermore, this

range of frequencies shifts to higher frequencies as the tree structure is spread from r

= 0.53 to r = 0.60. The maximum RCS of each of these trees varies in a range of 3

dB approximately at the same frequency.

Scattering from an actual tree will not exactly follow all these patterns, but it

is felt that the trends would generally remain the same. This is specially true for the

frequency behavior.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The radar cross section of natural trees is a complicated problem of

electromagnetic scattering. The real trees are made up of long, intersecting, and

lossy objects. The geometry of these objects is not easy to set up in a three

dimensional space.

in this thesis, the real fractal trees were approximated by planar fractal trees.

The radar cross section of these trees was calculated by developing a Fortran

program. The planar fractal trees that were used for this investigation were

symmetric planar structures composed of perfectly conducting and non-intersecting

planar dipoles. The geometry of these structures was generated using fractal theory.

A. CONCLUSIONS

The radar cross section of the planar fractal trees was calculated using the

moment method theory. For a given planar structure composed of planar strips and

illuminated by a plane wave, the program generates, the geometry of the PWS

modes, calculates the impedance between any two of them, and fills the impedance

_matrix (Z). The voltage on eact PWS mode, due to the incident electric field, is also

calculated. ani the voltage column •ector [V] is generated.

The RCS program uses the moment method Lheory to calculate the current

distribution on each PWS mode. The radiation equations of electromagnetic theory

are used to determine the scattered ele•tric field due to the current induced on cach

P-VS mode of the structure. The knowledge of both the given incident
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electric and calculated scattered electric fields leads to the calculation of the radar

cross section (a/A 2 ), for the given angles 0o,po of the incident electric field.

The calculated radar cross section of a single centered loaded vertical dipole

was compared with the values given in [Ref. 8, pp. 115], for a similar dipole.

Although the investigation was for a planar dipole and in [Ref. 8] the dipole was

cylindrical, the discrepancy of the results was very small.

In this thesis, five models of planar fractal trees were investigated. The

geometry of these models was generated by a given program which was modified to

generate the input data for the developed RCS program.

The broadside radar cross section, for the monostatic case, was calculated for

three of these planar fractal trees, for a frequency range of 15 GHz to 75 GtIz in

steps of 15 GHz. This investigation showed that the radar cross section varied in a

range of 10 dB in the E-Plane. In the H-Plane, the variation of a/A2 was

syimnetric about the 900 axis and smooth at low frequencies and small branching

angles. Fo: higher branching angles and reduction factors, more variations of a/A 2

with the frequency were seen in both dhe E and il planes.

The maximum RCS at ko = 90(, o = 00 showed a small variation over a

frequency range. This range was different on each investigated tree. The variation of

the maximum RCS followed a straight line at the other frequencies. In each tree and

at the same frequency, the maximum RCS varied in the range of 3 dB

appr-oximately.

It was found that the developed RCS program was not able to calculate the

radar cross .ection of fractal trees that were characterized by large values of

reduction factor and branching angle due to memory restrictions and other

numerical probhlns.
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The scattering from an actual tree will not exactly follow the patterns that

were described in Chapter 5, but it is felt that the trends would generally remain

the same. This is specially true for the frequency behavior.

B. RECOMMENDATIONS

One recommenaation is to investigate the radar cross section of planar fractal

trees characterized by values other than those used in this thesis. Especially, a

limited set of reduction factor and branching angle has to be established for the

same physical length of the initial dipole.

Another recommendation is to investigate the radar cross section of planar

fractal trees characterized by the same values of reduction factor and branching

angles as those that were used in this thesis but with different physical and

electrical dimensions of the fractal trees.

In this thesis, the branches of the fract:l trees were assumed to be perfectly

conducting planar strips. The trees were considered without leaves. The radar cross

section of fractal trees composed of lossy planar strips and with leaves should be

investigated.

Finally, the generation of a three dimensional fractal tree and its radar cross

section may be investigated.
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APPENDIX A

PROGRAM RCS

C
C THIS PROGRAM CALCULATES THE RADAR CROSS SECTION OF A
C PLANAR STRUCTURE COMPOSED OF ARBITRARILY ORIENTED
C PLANAR THIN DIPOLES. THE DIPOLES ARE NOT INTERSECTING.
C THE DIPOLES ARE PERFECT CONDUCTORS.
C
C
C GEOMETRY IN Y-Z PLANE
C
C INPUT DATA:
C
C F = FREQUENCY IN GHZ
C NW = NUMBER OF DIPOLES
C A,B = COORDINATES OF INCIDENT ELECTRIC FIELD ON Y AND Z
C AXIS RESPECTIVELY.
C LW = HALF LENGTH OF EACH DIPOLE IN CM
C WW = HALF WIDTH OF EACH DIPOLE IN CM
C SW, TW = COORDINATES OF THE CENTER OF EACH DIPOLE
C ALONG Y AND Z AXIS RESPECTIVELY
C PSIW = ANGLE IN DEGREES BETWEEN THE Z AXIS (REFERENCE)
C AND DIRECTION OF CURRENT FLOW ON EACH DIPOLE
C (POSITIVE ANGLES ARE MEASURED CLOCKWISE)
C NW = NUMBER OF SEGMENTS THAT EACH DIPOLE IS
C SUBDIVIDED
C TIIITA0, PHIO = ANGLES IN DEGREES OF INCIDENT ELECTRIC
C FIELD.

• C

C OUTPUT DATA:
C
C NORMALIZED RCS (a/A2) IN dB

REAL LS(1:230),S(1:230),T(l:230).PSI(1:230)
REAL LENPGSSU.TUWID,A.B,MAG(1:230)
INTEGER I,NiM AX,INDX(230),NT,NPL,M,N,K,NW
COMPLFI-X Z(1:230.1 :230),V(l:30),CUR(&:230)
COMMON/ RCI!/ NMAX
COMMON/ 11(2/ LSW1,S,T,PSI
COMMON/! RC4/ CUR
OPEN (UN I.IIE='INPUTI'.FORM'IOIMATTEI')--- OPEN (UN I'T=2FIIDE= tOUTIPUT1',I'ORM = 'UNI'OIRMATTED')

OPEN (UNIT3FIIIE-INPUT',FORM='FORNIATTEI)')
OPEN (UNI T=4,FILE='OUTPUT',:FORNI='FOIC, MAT'rED')
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READ(1,*) F,NWAB
P V= ~ ATAN(1.')

KO0 = PI*F! 15.
HAD = PI/180.
CALL ZMATR. (F,NW,Z)
NP=230
NT=NMAX
CALL CLUDCP (Z,NT,NP,INDX)

22 READ (3,*,END=11,b THITAO,PHJO
CALL VOLT (F,THITAO,PHIOA,B,V)
CALL CLUB SB (Z,NT,NP,INDXV)
DO 54 K=1,NT
CUR( K=V(K)

54 CONTINUE
CALL RADIAT j F,THITAO,PHIO,NMAX,A,B,RCS)
WRITE(4,*) THITAO,PHIO,RCS
PRINT*,RCS
GOTO 22

11 CLOSE(' )
STOP
END

C
c SUBROUTINE TO COMPUTE THE MUTUAL IMPEDANCE BETWEEN
C THE PWS MODES OF N ARBITRARILY ORIENTED DIPOLES.
C
C GEO)METRY IN THE Y-Z PLANE
C

SUBROUTINE ZMATR (F,NW,Z)
REAL F,S( 1:230),T(1 :230),LG SG TG WI( 1:230),PSI( 1:230)
REAL PSIG,PSIW( 1:70),L W( i:70ý,H,'W,DHI,DW,WIDTHi,LENG
REAL Hi ,Hl2,'I ,W2,S1,S2,T1,T2,PSI1 ,PSI2,LS( 1:230)
REAL WW( 1:70),SW( 1:7OXTW( 1:70),SS(1:20),TS(1:20)
REAL PGWID,LEN,SU.TUA,B
INTEGER TEMP,PLNS4(1:70),NMAXj,N,NW
INTEGER FUN,GJGB,G"R,K
COMPLEI`X Z12,Z( 1:230,1:230)
COMM I O/ RC2/ IS,WI ,Sy,TPSI
COMMON/ RCI/ NMAX
COMMON/ JOHIN/ IG,NG-,' ,TG ¶PSl C LENG
COMMON/ Z/PAR/ 1 WDWl)ll
CONIMON/ ZINC/ill 1112,WI ,W2,S1 ,S2,T1 ,'1'2.P)SI 1,PS!2
DO 101 1 1,NW

REA)( ,')LW(I),WW(l),SW(I),TýW(l),P)SIW(l),NS(I)
101 C 0)N1'JN UE'

('lX)st(1)
NNIAX =0
DO 75 k1INW

NNIAX =NNIAX + (NS (1) - 1)
75 C'ONTIiNUE
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DO 50 I=1,NW
LENG = LW(I)
LG=2*LW(I )FLOAT (NS(I))
WIDTH=WW(I)
NG=NS (I)
SG=SW (I)
TO TWAV
CALL GEO vSS,TS)
GR=NS(I)±Gfl-i

DO 60 J=1,NS(I)-l
PSI(M )-PSIG

WI(M= WIDTH

S(M)=sS(J3

PRINT*,S(M),T(M)
M =M+ 1

60 CONTINUE
GB=GR
P=GR+l

50 CONTINUE
TEMP=NS(l)-l
L=I
G=NMAX
DO 80 M=1,G

IF(M.LE.TEMP)GOTO 85
L=L-4-
TEMP=TEMP+NS(L)-1

85 CONTINUE
K=TEMP
DO 90 N-M,%3

IF'(N.LE.K)TIIEN

DW=0
DII=AIS (NI.-N)*Il
CALL ZSDIP)1(F,Z12)
Z(N, N )=Z 12
PRINT¶,Z(NI,N)
WRIVIT'(2) Z(N-IIN)
1111zS( NI

fl=%Vl( N)
W2=W(N)

S2SN)
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T2=T(N)PSII=PSI(M)

PSI2=PSI(N)
CALL ZPSUR (F,Z12)-- Z(M,N)=Z12
PRINT*,Z(M,N)

WRITE(2) Z(M,N)
ENDIF

90 CONTINUE
80 CONTINUE

DO 24 M=2,G
DO 26 N=1,M-1

M,N)=Z(N M)
RITE(2) Z(M,N)

26 CONTINUE
24 CONTINUE

RETURN
END

C
C SUBROUTINE TO COMPUTE THE MUTUAL/SELF IMPEDANCE
C BETWEEN TWO DIPOLES. THE DIPOLES ARE ASSUMED TO BE
C COPLANAR, IDENTICAL AND PARALLEL. THE DIPOLE TO
C DIPOLE IMPEDANCE IS COMPUTED AS THE SUM OF FOUR
C MONOPOLE TO MONOPOLE IMPEDANCES.
C
C IN 'UT PARAMETERS:
C
C F:: Frequency of operation (GHz)
C H = Half height of the dipole (cm)
C W= Half width of the dipole (cm)
C DH = Longitudinal distance between the two dipoles (cm)
C DW = Transverse distance between the two dipoles (cm)
C

SUBROUTINE ZSDIP (F,Z12)
REAL H, W, DW, DII, F
COMPLEX Z12, ZT
COMMON/ ZPAR/ H,W,DW,DHI
ZT = (0.j0.)
Z12 (0.,0.)
CALL ZSMONP (F, 1t, W, DW, D1H, 0, 1, 0, 1, ZT)
Z12 = Z12 + ZT
CALL ZSMONP (F, 11, W, DW, DII + I1, 0, 1, 1, 0, ZT)
Z12 = Z12 + ZT
CALL ZSMONP (F, 11, W, DW, D11 - 1, 1, 0, 0, 1, ZT)
Z12 = Z12 + ZT
CALL ZSMONP (F, 11, W, DW, Di1, 1, 0, 1, 0, ZT)
Z12 = Z12 + ZT
RETURN
END
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C SUBROUTINE TO COMPUTE THE SELF/MUTUAL IMPEDANCE
C BETWEEN TWO IDENTICAL, COPLANAR MONOPOLES. THE
C CURRENT IS ASSUMED TO BE CONSTANT IN THE
C TRANSVERSE DIRECTION.
C
C REF: R. JANASWAMY, A SIMPLIFIED EXPRESSION FOR THE
C SELF/MUTUAL IMPEDANCE BETWEEN TWO COPLANAR
C AND PARALLEL MONOPOLES, IEEE T-AP, AP-35,
C No. 10, pp. 1174-1176, October 1987.
C
C INPUT PARAMETERS:
C
C F = FREQUENCY IN GHz
C H = LENGTH OF EACH MONOPOLE (cm)
C W = WIDTH OF EACH MONOPOLE (cm)
C D = CENTER TO CENTER SPACING BETWEEN THE TWO
C MONOPOLES IN THE DIRECTION TRANSVERSE TO THE
C CURRENT FLOW (cm)
C HH = CENTER TO CENTER SPACING BETWEEN THE TWO
C MONOPOLES IN THE DIRECTION OF CURRENT FLOW (cm)
C
C I11 = TERMINAL CURRENT OF END 1 OF MONOPOLE 1.
C 121 = TERMINAL CURRENT OF END 2 OF MONOPOLE 1.
C 112 = TERMINAL CURRENT OF END 1 OF MONOPOLE 2.
C 122 = TERMINAL CURRENT OF END 2 OF MONOPOLE 2.
C
C NOTE: Ill, 121, 112, 122 can assume values only 0 or 1.
C ICODE = 0, IF D .LE. 4W
C ICODE = 1, OTHERWISE
C With ICODE = 0, the expression provided in the above paper is used.
C With ICODE = 1, a modified form of the expression provided in the
C above paper is used. (cf. notes)
C
C OUTPUT PARAMETERS:
C
C Z12 = COMPLEX IMPEDANCE BETWEEN TIHE TWO SURFACE
(1 MONOPOLES.
C

SUBROUTINE ZSMONP (F, I1, W, D, 111t, Ill, 121, 112, 122, Z12)
REAL F, 11, W, D, 1111, A. B, PI, N0, V, UB, UB3P, UA, UAP
REAL N\W, Kit, 1K), R , 11'R, FI, 11, 12, 13, 14, SI, Cl
REA!, UABP. ZR, ZI, X, AA (1). 11- (1), SQXV, UAB, TINY
INTEGER 111, 121. 112, 122- M, N, NX, KIJ, CO)1E
COMPIL'EX Z12. A( (-1:1.-1:1), El, E2, ZI, J, MNI, E3, El, FAC
I EXTIRNNAL FRi, FI
COMMON /PARAM/ N. V, ED, A. B, ICODE
1- (X) = Cl (A BS )) - s1 S (xW
SQXV (X) = SQOT (X' X + V - V)
TINY = l.E-4i
I'P = 4. * ATAN (I.)
"XX= 1

7i



KO = PI * F V15.
KW=KO*W
KH = K0 * H
KD = KO* D
ICODE = 0
IF (KD .GT. 4. * KW) ICODE = 1
KI = 10C

C Note that with this choice of KI accurate results are found in the
C region 0 < D < 4 W, and for D > 20 W. In between these two regions,
C accurate results are found with KI = 20. Hence the above choice is
C good only if this code is used for values of D satisfying the above
C inequalities.
C

FAC = CMPLX (1., 0.)
A = KD -2. *KW
B = KD + 2. *KW
IF (ICODE .EQ. 1) GO TO 2
AA (1)= A
BB )= B-- ~GO 0O3

2 AA (1) =-2. * KW
BB (1) =2.*KW

3- I = (121 * COS (H) - Ill) * 112
12= (I2-Il21*COS KH * 122
13= 1I21-l11*COS (1H) *112
14= (I21-I11*COS (KH)) *122
J = CMPLX (0.1.)
ZI = CEXP (J * KH)
AC -1, -1)=12+11/ZI
AC -1, l)=12+ 1l*Zl
AC (1, -1)= 13-14"ZI
AC I,I)=!3-14/ZI +ZAC 0,-1)=-(AC (-l,-l)*Zl+ AC (I: 7• ZI)

AC 011)=-(AC(1,1) Zl +AC(-1.1) ZlS
RC 15. /(2. * SIN (KiU) * KW) **
Z12 (0., 0.)
DO I M -1, 1
1) 1 N -1. 1,2
V= Ko-(1il +Moll)
IF (ICOt1 .E-Q. 0) GO TO 4
FAC = CEXP (P S N * V)
CMN CMPLX (6.,0.)
GO TO 5

4 UA = SQXV (A) + N wV
UAP = UA -2. * N * V
VB = SQXV (11) + N 0 V
U131 = UB -2. * N " V
UAB = SQXV (KID) + N *V
UABP = UAB -2. *N "V
El = El (U1)
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E2 = (0.,0.)
IF (ABS (A) .GT. TINY) E2 = EI (UA)
E3 = (0.,0.)
IF (ABS (KD).GT. TINY) E3 =EI (UAB)
CMN = 0.5 *(B * B* E1 + A* * E2-2. * KD* KD* E3 +

& CEXP (-J * UB)* (1. + J *UBP) + CEXP (-J * UA) *
& (1. + J * UAP)- 2. * CEXP (- J * UAB) *(1. + J * UABP))
5 CALL HABER (NX, AA, BB, FR, KI, ZR)

CALL HABER (NX, AA, BB, FI, KI, ZI)
Z12 = Z12 + AC (M, N) * (CEXP (J * N*V)* CMN + (ZR + J *ZI)

& * FAC)
1 CONTINUE

Z12 = Z12 * RC
RETURN
END

C
REAL FUNCTION FR (XI, NX)
INTEGER N, NX, CODE
REAL X, V, TI, KD, A, B, XI (NX), TKW, T2, CI, SI, TINY
COMPLEX El, J
COMMON /PARAM/ N, V, KD, A, B, CODE
EI (X) =CI (ABS (X)) - J * Sl (X)
TINY = 1.E-6
X =XI (1)
J = CMPLX (O.l.)
IF (CODE .EQ. 1) GO TO 1
Ti =SQRT (X * X + V* V)
FR = COS (TI)
IF (ABS (V) GT. TINY) FR = FR (1. -N V / Ti)
IF X .LE, KD) FR - FR * A
IF X .GT. KD) FRi -FR * B
GO TO 2
TEW= 0.5*(I3-A)
T2 = SQT ((KD + X)" (ND + X) + V V)
FR REAL (El (T2 + N V))
FR FI'l (TKW - ABS (X))

12 END

REAl. FUiNCTION FI (XI, NX)
IN'rIEUGEIt N, NX. COI)E
REAL X, V, TI, lID, A, B, XI (NX). TKW, 12, CI, SI 1TINY
COMPLEX El, 3
COMMON /PARAM/ N, V., I), A. B, CODE
El (X) = Cl (A IS (X)) - J SI (X)
x = XI (1)
TINY= lE1
J = CMPLX (,0.. 1.)
I! = SQIOT CX X + V ' V)
IF (CODE .EQ. 1) GO TO I
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FI =-SIN Ti
IF (AB V 1.GTTINY) FI Fl (1. -N*V/Tl)
IF (X.LE. D) FI FI *A
IF (X.GT. KD) FI -FI *B
GO TO 2

1 TKW = 0.5 *(B -A)
T2 =SQRT ((ED + X) * (KD + X) + V*V)
FI AIMAG (ElI(T2 +N *V))
FI FI * (TKW -ABS (X))

2 END
C
C SUBROUTINE TO COMPUTE THE COORDINATES OF THE PWS
C MODES OF EACH DIPOLE IN THE Y-Z PLANE
C

SUBROUTINE GEOM (S,T)
REAL THI,H1 ,H2,Y,Z,SG,TG,LG,PSIG
REAL P,Q,S(l:20),T(l:20),LENG
INTEGER M,NG,K
COMMON/ JOHN/ LG,NG,SG,TG,PSIG,LENG
COSD(X) =COS(X*RAD)
SIND(X) =SIN (X*RAD)
PI=4.*ATANi(.
RAD=PI/180.
THI=90.-PSIG
Hl=COSD(THI)
H2=SIND(THI)
Y=SGiLENG*Hil

P=LG*Hl
Q=LG*H2
S(l )=+P
T(l )=Z+Q
DO 225 K=2,NG-1

S(K)=S(1 )+(K-1)*P

225 CONTINUE
RE'1ULN'
END

c

SUBIItOUTIN 1 ZPSUR (FtZ1 2)
Ill-,At 1-11, Wl, 112, W2, PSI, F, YSTAII. ZSTAR. KO,. At (2), lil1(2)
HtEAL C. (3), D (3), tT, 7jT, COT, C-SEC, KOS. X, PI, PSII, PS12

REA 21. I'I, S2, T2, IUNTG, IMINTG, RESULT, SIND), COSD,SI.CI
INTEGE~R NX. K!
C-OMPLI'X. Z12, 3
EXTIERINAL RIN'IG. IMINTG

COMMON JPARtANM2`/ C.* D, WVr, ZT, CSEC. col" KiOS, J, 1(0:.
SIXID (X) =SUN (X * 13/ Iso.)
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COSD (X) C cOS (X * PI180.)
DATA Al, 131 /2 * -1.. 2" 1./0
PI = 4. * ATAN (1.)
PSI = PS12 - PSII
IF (ABS (PSI ).LF.0.4) PSI= SIGN(I.,PSI)*0.4
J = CMPX (0.1.)
NX= 2
KI-3
K0 = PI * F /15.
C 1 =1. / SIN (KO * H1)
C3 = C (1)
C 2 = -2. * COS (KO * Hi) * C (1)
D 1 =./ SIN (KO * H2)
D 3 = (1)
D 2 =-2. * COS (KO * H2) * D (1)
CS C = 1. SIND (PSI)
KOS = CO SD (PSI)
COT = KOS * CSEC
YSTAR = (S2-SI) * COSD (PS11) - (T2-TI) * SIND (PSII"
ZSTAR = ($2-SI) SIND (PS11) + (T2-T1) * COSD (PSI1I
RT = YSTAR* CSEC - H2
ZT = YSTAR * COT - HI - ZSTAR
CALL HABER (NX, Al, BI, RINTG, KI, RESULT)
Z12 = RESULT
CALL HABER (NX, Al, BI, IMINTG, KI, RESULT)
Z12 = Z12 + J * RESULT
Z12 = -3.75 * Z12
RETURN
END

C
REAL FUNCTION SI (Xl)
REAL XI
REAL AF (4), BF (4), AG (4), BG (4), X, X2, X4, X6, X8, FX, GX,

& PI. SGN
DATA AF / 38.027264,265.187033, 335.67732, 3•.I02495 /
DATA BF / 40.021433, 322.624911, 570,23628, 157.105423 1
DATA AG / 42242855, 302.757865. 352.01849S. 21.821899 /
DATA BG / 48.196927, 482.4859$4, 1114.9788, 449.690326 /
S= 0.
IF (Xl EQ. 0.) RETURN
SGN = +1.
IF (Xl I.T. 0.) SGN = -1.
X = ABS (XI)
X2= X X
IF (X .GE. 20.) TIIEN
FX =1./ X 1.- 2. /X•)
GX I./ X2 (I. -6. / X2)
GO 10 1
END) IF
X4 = X2" X2
X6 = X4 * X2
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X8 =X4 *X4
IF (X .LT. 1.) THEN
SI = X*(1.- X2 / 18. + X4 / 600.- X6 / 35280. + X8 / 32659.Q
SI = SI*SGN
ELSE
FX = (I. + AF (1) / X2 + AF (2) / X4 + AF (3) / X6 + AF (4) /

& X8)
FX = FX / (X * (I. + BF (1) / X2 + BF (2) / X4 + BF (3) / X6 +

& BF (4)/X8))
GX = .+AG (1) / X2 + AG (2) / X4 + AG (3) / X6 + AG (4)/

GX = GX/(X2* (I. + BG (1) / X2 + BG (2) / X4 + BG (3) X6 +
& BG(4) X8))1 Pi= 4. * ATAN '(1 .*PI) *2.*P

X X - AINT ( 2(2.*PI))*2.*PI
SI = SGN * (PI / 2. - FX * COS (X) - GX * SIN (X))
END IF
END

C
C

REAL FUNCTION CI (X)
REAL AF (4), BF (4), AG (4), BG (4), X, X2, X4, X6, X8, FX, GX
REAL PI
DATA AF / 38.027264, 265.187033, 335.67732, 38.102495 /
DATA BF / 46.021433, 322.624911, 570.23628, 157.105423 /
DATA AG / 42.242855, 302.757865, 352.018498, 21.821899 /DATA ,BG / 48.196927, 482.485984, 1114.978885, 449.690326 /
III (X .LE. 0.)I HEN
PRINT *, 'Invalid argument for Cl (x)', ' x = x
RETURN
ELSE
X2=X*X
X-4 = X2 ' X2
IF (X .GE. 20.) THEN

=I. / (1. -2. / X2)
0x =. /X2"(I.- 6./x2)
GO TO I
"END II"
X6 = X4 * X2X8 = X4 * X4
IF (X .LT. 1.) TIIlEN
CI = 0.57721566 + ALOG (X) - X2' (0.2:5 - X2 96. + X4 / 4320,

EISE - XG / 3225 W-.)

FX ,(I, + AF(1) / X2 + AF (2) / X4 + AF(3) /X6 + AF (4)

X= FX I (X . + +f (1) / X2 + 1W(2) / X4 + BF (3) / Xo +
BF4 () / X)) "
0 AG + AG (I X2 + AG (2) / X4 + AG (3) 1/ X + AG (4)/

GX = GX / (X2* (1. + ; (I) / X2 + BG (2) / X4 + iBG (3) 1 X6
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& _ BG(4)X/X8 ))
P1 4. * ATAN (I
X-X -A.'NT (X /(2. * P1)) * 2. * PI
CI= FX * SIN (X)- GX * COS (X)
END IF
END IF
END

C
REAL FUNCTION RINTG (X, NX)
COMPYLEX J, EI, TERMi. TERM2, INTGR
INTEGER NX, M, N, P, Q
REAL * 4 PSI1, PSI2, S1, Ti, S2, '2
REAL * 4 C (3), D (3), R, Z, RT, ZT, U, V, CSEC, COT, KOS, Y
REAL * 4 X (NX),'Hi, H2, Wl, W2, KO, PZQR, SI, C,

& ,TT, ZM, RN, RMN, TESC, TESD, PI, PZQRP
COMMON/ ZINC/ HI,ttI2,WI,W2,SI,S2,Ti,T2,PSI1,PSI2
COMMON /PARAM2/ C, D, RT, ZT, CSEC, COT, KOS, J, KG
El (Y) = CI (ABS(Y)) - J* SI (Y)

INTGR = (0.,0.)
TESC = ABS (C 2 / C (i))
TESD = ABS ( (2 S
TT =ALOG (AB 1.+K
PI = 4. * ATAN (1.)
DO3M=l,3
IF (M .EQ. 2 .AND. TESC .LE. 1.E-6) GO TO 3
Z = (M-I) * HI
ZM =-U * W1 *COT + V*W2* CSEC + ZT ± Z
TERM2 = (0.,.)
DO2N=1, 3
IF (N .EQ. 2 .AND. TESD .LE. i.E-6) GO TO 2
R = (N-1) * H2
RN = -U * W1 * CSEC + V * W2 * COT + RT + R
IF (ABS (KO * RN) .LE. 0.SE-1) THEN
PZQRP = KG * ABS (ZM) - AINT (KO * ABS (ZM) / (2. * PI)) *

2.*PI
TERMI = CEXP (-J * PZQRP) * TT
GO TO 4
END IF
IF (ABS (KG * ZM).LE. 0.5E-1) THEN
PZQRP = KG * ABS (RN) - AINT (KG * ABS (RN) / (2. * PI)) *

& 2.*PI
TERM1 = CEXP (-J * PZQRP) * TT
GO TO 4
END IF
RMN =SQRT(RN *RN + ZM *ZM-2. *RN*ZM *KOS)
TERMi= (0.,O.)
DO 1 P = -1, 1, 2
DO 1 Q =-1, 1, 2
PZQR = P * ZM + Q * RN
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PZQRP = PZQR * KO - AINT (PZQR * KO / (2. * PI)) *2. * PI
TERM1 = TERM1 + P * Q * CEXP (J * PZQRP) *

& EI (KO * (RMN + PZQR))
1 CONTINUE
4 TERM2 = TERM2 + D (N) * TERM1
2 CONTINUE

INTGR = INTGR + C (M) * TERM2
3 CONTINUE

RINTG = REAL (INTGR)
END

REAL FUNCTION IMINTG (X, NX)
COMPLEX J, El, TERM1, TERM2, INTGR
INTEGER NX, M, N, P, Q
REAL * 4 PSIl, PS12, Si, Ti, S2, T2
REAL *4 C (3), D (3), R, Z, RT, ZT, U, V, CSEC, COT, KOS, Y
REAL * 4 X (NX), H!, H2, Wl, W2, KO, PZQR, SI, CI

& ,TT, ZM, RN, RMN, TESC, TESD, Pl, YZQRP
COMMON/ ZINC/ Hi,H2,Wl,W2,SI,S2,T1,T2,PSI1,PSI2
COMMON /PARAM2/ C, D, RT, ZT, CSEC, COT, KOS, J, KG
EI (Y) = Ci(ABS(Y)) - J * SI (Y)
U=X(13
V =X (2)
INTGR = (0..0.)
TESC = ABS C(l))
TESD = ABDS (2SD(1)
TT = ALOG (AB (1.+KOS)/(.-KOS)))
PI = 4. * ATAN (1.)
DO 3 M = 1, 3
IF (M .EQ. 2 .AND. TESC .LE. I.E-6) GO TO 3
Z = (M-i) * HI
ZM =-U * Wl* COT + V*W2* CSEC + ZT + Z
TERM2 = (0.,j.)
DO2N= 1,3
IF (N .EQ. 2 .AND. TESD .,E. 1.E--6) GO TO 2
R = (N-1) * H2
RN = -U * W1 * CSEC + V* W2 * COT + RT + R
IF (ABS (KG * RN) .LE. 0.5E-1) THEN
PZQRP = KO * ABS (ZM) - AINT (KG * ABS (ZM) / (2. * PI)) *

& 2.*PI
TERMI = CEXP (-J * PZQRF) * TT
GO TO 4
END IF
IF (ABS (KG * ZM) .LE. .5E-1) THEN
PZQRP = KG * ABS (RN) - AINT (KG * ABS (RN) / (2. * PI)) *

& 2.*PI
TERMI = CEXP (-J * PZQRP) * TT
GO TO 4
END IF
RMN = SQRT(RN * RN + ZM * ZM-2. * RN *ZM * KOS)
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TERM1 = (0.,O.)
DO 1 P =-1, 1, 2
DO 1 Q =-1, 1, 2
PZQR = P * ZM + Q* RN
PZQRP = K0 * PZQR- AINT (KO * PZQR / (2. * PI)) *2. *PI
TERM1 TERM1 + P * Q * CEXP (J * PZQRP)*

& EI(K * (RMN + PZQR))
1 CONTINUE
4 TERM2 = TERM2 + D (N) * TERM1
2 CONTINUE

INTGR = INTGR + C (M) * TERM2
3 CONTINUE

IMINTG = AIMAG (INTGR)
END

C
C Subroutine to compute a sequence of estimates EST1 (K) and
C EST2 (K), 1 .LE. K1 .LE. K .LE. K2 for the N-dimensional integral
C B1 BN
C Int ... Int FUN (xl, x2, ... xN) dxl dx2... dx3
C Al AN
C by Haber's method.
C Ref: P. J. Davis and P. Rabinowitz, Methods of Numerical
C Integratation, Academic Press, 1984.
C
C For each estimate ESTI (K), two additional quantities ERRI(K)
C and DEVI (K) are computed. If the values of DEVI (K) do not
C vary by more than 10% between consecutive values of K, then
C ERR1 (K) can be taken as a reliable bound on the difference
C between EST1 and t~e ntegral. A similar situation holds for
C EST2, DEV2, and .EK;!-R2 (K). The total number of functional
C evaluations is 4 * (Kl N + (KI+I) ** N + ... + K2 ** N) and K2
C should be chosen so as to make this may be halfed by eliminating the
C computation of the EST2 (K). In other situations, these values
C are much better than the ESTI (K). A program FUNCTION FUN (X, N)
C must be supplied by the user with X declared by the statement
C DIMENSION X (N). FUN must. be declared EXTERNAL in the calling
C program. If N < 1 or N > 10 or K1 < 1 or K2 < K1, the program
C terminates with IND = 0. Otherwise IND = 1.
C
C Modified by R. Janaswamy so that the output is average of EST1
C EST2. Also, K1 = K2 = K.
C

SUBROUTINE HABER (N, LL, UL, FUN, K, RESULT)
INTEGER N, IND, KEY, I, K, J
DOUBLE PRECISION AL (10), BE (10), GA (10), B, G
REAL FUN, Y1, Y2, Y3, Y4, ESTI, EST2, ERR1, ERR2,

& DEVI, DEV2, RESULT
REAL * 8 S1, S2, D1, D2
REAL LL (N), UL (N), DEX (10), P1 (10), P2 (10), P3 (10), P4 (10),

& QI (10), Q2 (10), Q3 (10), Q4 (10), RAN (10), AKN, AK, T, JAC
REAL AKI, BK
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EXTERNAL FUN
DATA AL/.4142135623730950, .7320508075688773, .2360679774997897,

& .6457513110645906, .3166247903553998, .6055512754639893,
& .1231056256176605, .3589989435406736, .7958315233127195,
& .3851648071345040/

IND = 0
IF (N .LT. 1 .OR. N .GT. 10) RETURN
IND = 1
JAC = 1.
DO 11= 1, N
BE (i) = AL (I)GA(I) = AL (I)
RAN () = UL (I) LL (1)
JAC = JAC * RAN (I)
DEX (I) = 0.
AK = FLOAT (K)
KEY = 0
AKI =AK- 1.1
SI=0.SI = 0.
Dl 0.
S2= 0.
D2=0.
AKN = AK ** N
T = SQRT (AKN) * AK
BK = 1./AK

5 KEY = KEY + 1
IF (KEY .EQ. 1) GO TO 6
KEY = KEY - I
J=1

4 IF (DEX (J) .GT. AK1) GO TO 8
DEX (J) = DEX (J) + 1.
GO TO 6

8 DEX (J) = 0.
J= J+1
IF (J .LE. N) GO TO 4
GO TO 3

6 DO71=1,N
B = BE (I) + AL (I)
IF (B.GT. 1.) B B - 1.
G=GA(1)+B
IF (G.GT. 1.) G =G- 1.
BE (I) = B + AL (1)
IF (BE () .GT. 1.) BE (I) = BE (1) - 1.
GA (I) = BE (I) + G
IF (GA () .GT. 1.) GA (I) = GA (I)- 1.
P1(I) = (DEX (I) + G) * BK
Qi (I) = LL (I) + RAN (I) * P1(I)
P2(I)= (DEX(I)+ .- G)* BK
Q2 (I) = LL (I),+ +RAN * )
P3 (I) = (DEX (I) + GA (I))* B
Q3 (I) = LL (1) + RAN (I)-* P3 (1)
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P4 (I) = (DEX (1) + 1. -GA (1)) * BK
7 Q4 (I) =LL (1) +RAN (1) *P4(I)

Yl -FUl1 %T (Q414
Y2 =FUN (Q2 ,N)
Y3 =FUN (Q3, N

* Y4 = FUN (Q4. N
Si =SI+ + Y1
Dl DI + (Yl -Y2) ** 2

*S2 S2 +Y3 +Y4
D2 D2 + (YI + Y3- Y2--Y4) ** 2
GO TO 5

3 ESTI 0.5 S1 /AKN
ERRI 1.5 *DSQRT (Dl) / AI(N
DEVI= ERR' * T
EST2 =0.25 *(Si + S2) / AKN
ERR2 =0.75 *DSQRT'(D)2) /AKN

2 DEV2 ERR2*T *AK
RESULT =0.5 *(EST? 4- ES2'f2) * ABS (JAG)
RETURN
END

C
C SUBROUTINE VOLT WHICH CALCULATgS THE VOLTAGE MATRIX
C VM
C
C GEOMETRY IN, THE Y-Z PLAINE
C
C

* SUBROUTINE VOLT(F,THITAO,PHilO,A,B,V)
REAL TSI,TCO,PS,PC,KY,KZ,A,B,KO,F,KX
REAL MAR,GTI,PRS,PRC,MOD,KZHTA
REAL S(1:230),T(1:230),PSl(I:230),LS(1:230),VV!(. :230),THITAO,P HID
INTEGER NMAX
COMPLEX V(1:23O),J,STR,VOM
COMMON/ BRAVO/ KX,KY,KZ
COMMON/ RC2/ LS,WI,S,T,?PSI
COMMON/ RCI/ NMIAX
COSD(X)=COS(X*RAD)
SIND (X) =SIN (X*RAD)
PI=4.*ATAN(i.)
RAD=PI/180.
KO=PI*F/15.
J=CMPLX(0.,1.)
TSI=SIND(THITAO)
TCO=COSD (THLTAO)
PS=SIND(PHIO)
PC=COSD(PHIO)
KY=KO*TSI*PS
KX=K0*TSI*PC
KZ=KO*TCO
DO 234 K=1,NMAX

PRS=SIND(PSI(K))
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PRC=COSD (PSI(K))
MAR=KY*S(K)+K Z*T(K)
STR=CEXP(-J*MAR)VOM=(STR/SIN(LS(K)*K0))*(A*PRS+B*PRC)

KZHTA=KY*PRS+KZ*PRCMOD=COS(K0*LS(K))--COS(KZHTA*LS(K))

GTI=KZHTA**2-K0**2
IF(ABS(KZHTA-KO)/KO.LT.1.E-2.OR.

& .ABS(KZHTA+KOV/KO.LT.1.E-2)THEN
V(K)=VOM*LS(K)*SIN(KO*LS(K))
ELSE
V(K)=(2*KO/GTI)*VOM*MOD
ENDIF

234 CONTINUE
RETURN
END

C
SUBROUTINE CLUDCP (A, N, NP, INDX)
INTEGER NP, N, INDX (NP). I, J, K, P, NMAX
PARAMETER (NMAX = 230)
COMPLEX A (NP, NP), TEMP, ETA. W (NMAX)
REAL AAMAX, DUM
DO 1K= 1, N-1
AAMAX = CABS (A (K, K))
P=K
DO 2 1 = K+1, N
DUM = CABS (A (I, K))
IF (DUM .GT. AAMAX) THEN
AAMAX = DUM
P=I
END IF

2 CONTINUE
INDX (K) = P
DO3J=1,N
TEMP = A (K, J)
A (K, J) = A (P, J)
A(P, J) = TEMP

3 CONTINUE
DO 4 J = K+I, N
W (J)= A (K, J)

4 CONTINUE
DO 51 = K+1, N
ETA = A (I, K) / A (IN, K)
A (I, K) = ETA
DO 6 J = K+, N
A (1, J) A (I, J)- ETA * W (J)

6 CONTINUE
5 CONTINUE
1 CONTINUE

RETURN
END
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C
SUBROUTINE CLUBSB (A, N, NP, INDX, X)
INTEGER N, NP, I, J, INDX (NP), NMAX
PARAMETER (NMAX = 230)
COMPLEX A (NP, NP), X (NP), TEMP, Y (NMAX)

C
C DO PERMUTATIONS ON THE EXCITATION VECTOR USING THE
C INFORMATION ON THE ROW OPERATIONS DONE IN CLUDCP.
C

DO 1 K = 1, N-1
TEMP = X (K)X (K) =X (INDX (K))
X (INDX (K)) = TEMP

1 CONTINUE TEMP
C
C FORWARD ELIMINATION
C

DO 2 1= 1, N
Y (I)= X (I)
DO 2 J = 1,1-1
Y (I) = Y (I) - A (I, J) * Y (J)

2 CONTINUE

C
C BACK SUBSTITUTION
C

DO 3 1 = N, 1,-1
X (1)-= Y (1)
DO 4 J = I+1, N
X (I) = X (I) - A (I, J) X (J)

4 CONTINUE
X (I) = X (I) / A (I, I)

3 CONTINUE
RETURN
END

C
C SUBROUTINE RADIAT TO COMPUTE THE RADAR CROSS SECTION
C OF A PLANAR STRUCTURE COMPOSED OF ARBITRARILY
C ORIENTED PLANAR DIPOLES.
C

SUBROUTINE RADIAT (F,THITAO,PHIO,NMAY -\,B,RCS)
REAL RC,THITAO,PHIO,LS( 1:230),WI(1:230),S( i:230),T( 1:230),P1I
REAL CR,F,K0,PI,UN,DM,EM,RAD,P,R,A,B,THITA,PHI,RCS,PSI(1:230)
REAL KX,KY,KZ,KRON,KG
INTEGER G,NMAX
COMPLEX J,NTHIO,NPHI0,TEMPI,TEMP2,CUR(1:230)
COMMON/ BRAVO/ KX,KY,KZ
COMMON/ RC2/ LS,WI,S,T,PSI
COMMON/ RC4/ CUR
COSD(X) = COS(X*RAD)
SIND(X) - SIN(X*RAD)
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PI1=4. * ATAN(l.)
RAD = PI1/S.
1(0 = PI*F/ 15.
UN=12O.* F
THITA = 180.- THITAO
PHI = 180. + PHIO
J=CMPLX(O.,l.)
TEIP1= (0.,0.)
TEMP2= (0.,0.)
NTHIO= (0.,0.)
NPHIO= (0.,0.)
DO 58 G=-,NMAX

Pl=PSI(G)

& EM=KO*(SIND(Pl*INý(HT)SN(H)
P=SND(Pl)*COSD(THITA)* IND (PHI)-COSD(Pl)*SIND(THITA)
TEMP1=P*CEPJDM )*CUR(G) ISIN (KO*LS(G))
TEMP2=CEXP(J* M)*CUR(G)*SI ND(F 1)*COSD (PHI)/ SIN(K O*LS (G))
IF(ABS(EM-KO)/KO.LT.1.E-2.OR.ABS(EM+KO)/KO.LT.1 .E-2)THIEN

ELSE
K G=-2*KO* (COS (EM*LS(G))-COS(KO*LS(G)))/ (EM**2-KO**2)
ENDIF
NTHIO=TEMP1*KG+NTHIO
NPHIO=NPHIO±KG*TEMP2

58 CONTINUE
CR= CABS (NTH o)**2+ CABS(NPHI0)**2
KRON-(A*KY+B*KZ)/IKX
RC=(KO* *2)*(CUN**2)*CR(4*P*AS)*2B()*2

&I +ABS (KRON) **2)') I(B()*2ASB*2i
IF((RC/((30. /F)**2)).LT.1 .E-6)THEN'

ELERCS = 1O.*ALOGlO(1.E46)

EDFRCS=1 O,*ALOG 1O(RC/((30./F)**2))

RETURN
END
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APPENDIX B

PROGRAM TREE

C PROGRAM TREE
C
C PROGRAM TO GENERATE A PLANAR FRACTAL TREE WITH
C REDUCTION FACTOR (COND) AND BRANCHING ANGLE THETA
C WRITTEN BY T.R. NELSON, PhD, UNIVERSITY OF CALIFORNIA
C SAN DIEGO, LA JOLLA, CA, 90293, AND MODIFIED BY
C LT. JOHN DEMIRIS TO GENERATE THE INPUT DATA FOR
C THE RCS PROGRAM.
C
C INPUT DATA:
C
C L = NUMBER OF BRANCHING LEVELS.
C N = NUMBER OF BRANCH SEGMENTS.
C ILEN = INITIAL LENGTH.
C ISP = INITIAL STARTING POINT.
C COND = REDUCTION FACTOR.
C THETA = BRANCHING ANGLE.
C
C OUTPUT DATA:
C
C IX, IY = COORDINATES OF FIRST AND END POINT OF EACH
C GENERATED BRANCH.
C INPUT DATA FOR RCS PROGRAM
C

REAL ZZ (1:5,1:1024 ),ISP,ILEN,IX,IY,ITHI I
OPEN (UNIT=l, FILE = 'INGEOM',FORM = 'FORMATTED')
OPEN (UNIT=2, FILE = 'OUT', FORM = 'FORMATTED')
OPEN (UNIT=10,FILE =&INPUTI',FORM='FORMATTED')
READ(I,*,END= 10) L,N,ILEN,ISP,COND,TH ETA

10 CLOSE(1)
ZZ( 1,1) = ISP
ZZ (4,, = ILEN
zz (31,= 0.
ZL = ZZ (4,1)
ZZ (2,1) = 0.
ZN=N
PI = 3.14159265
IX =0.
IY = 0.-ILEN
IX = ZZ(2,1)
INI= ZZ(1,1)
DO 100 LOOP =I,L
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ZLOOP = LOOP
NPTS = N**ZLOOP
INC = 0
NPREV = N**(ZLOOP-l)
PREV = NPREV
ANGLE = (ZN-i.0)/2.0
ZINDX = -ANGLE
DO 200 J =i,NPTS
ZJ = J
IF (JINC.GE.N) ZINDX=-ANGLE
IF (NC.GE.N) INC=0
IW=NPTS-J+i
IR. = PREV-ZJ/ZN+1.0

T = ZZ(3,IR)XL=ZZ(i,IR)I

Y = ZZ ( 2IR)
Y~ = ZL*COND

IF (ZLl.LT.0.l) GOTO 300
THI = ZLi/33.0
Ti = T+THETA*ZINDX
ZZ(3,IW) = Ti
T2 = T.*PI/180.0
IX= Y

TEMPXI1=IX
TEMPYI=IY

C
C IX,IY ARE THlE COORDINATES OF THE FIRST POINT OF THE
C BRANCH ALONG THE X,Y AXIS RESPECTIVELY
C

WRITE(2,*) IX,IY
Xi = ZLI*COS(T'2)+X
YI ZLP*SIN(T2)+Y
IX= \'
IY=Xi

C IXIY ARE THE COORDINATES OF THE END POINT OF THlE
C BRANCH ALONG THE XY AXIS RESPECTIVELY

WRITE'1-(2,*) IXIY
TENIlX 2= IX
TEM PY2= IY

c' S AND T ARE THE COORDINATES 0OF THE CENTER OF EACH
C B3RANCHI

S = (TFMlPX2±TI"MPXl)/2.
T= (TEMIPY2+TEMPY1 )/
P)SI1 ATIA N((TF'EMIX9TEN'uý1I)XlI)/(T'EMI)Y2--TFMI)Y 1))
PSI=PSI 1*180.11)1

86



ZLHALF=ZL1 /2.
TH1HALF=TH 1/2
WRITE (10,*) ZLHALFTHlHALF,S,T,PSI
Z Z (,1W) =X1

ZZ2,1W) =Y1
* ~ZZ(4,1W) =ZLI

ZINDX=ZINrDX+1.O
INC=lNC+l

200 CONTINUE
100 CONTINUE
300 STOP

END
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